A convenient stereoselective route to novel tetrahydroxyindolizidines

Ana T. Carmona, José Fuentes and Inmaculada Robina*
Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 553, E-41071 Sevilla, Spain

Received 29 July 2002; accepted 19 September 2002

Abstract

A convenient stereoselective route, for the preparation of novel tetrahydroxyindolizidines, based on syn-hydroxylation reactions of alkenyl pyrrolidines followed by cyclization, is reported. Derivatives of (+)-swainsonine are prepared. © 2002 Elsevier Science Ltd. All rights reserved.

Polyhydroxylated indolizidines belong to an important class of alkaloids that possess a wide range of biological applications, mainly as glycosidase inhibitors, ${ }^{1}$ and can be used as antiviral, antitumor, and immunomodulating agents. ${ }^{2}$ This fact, together with their attractive chemical structures have led to many synthetic approaches. ${ }^{3}$ Since small modifications in their structure may induce significant changes in their biological activity, potency and/or specificity on glycosidase enzymes or receptors, ${ }^{4}$ the preparation of unnatural epimers and other structural analogues of the natural indolizidines has received much attention, ${ }^{5}$ and new methodologies to generate structural analogues are still needed. To the best of our knowledge, of the synthetic analogues of polyhydroxyindolizidines, indolizidinones $\mathbf{8}$ and 9 and indolizidines $\mathbf{1 7}, \mathbf{1 9}$ have not been described. Of these, $\mathbf{8}$ is a precursor of a hydroxy analogue of (+)-swainsonine described by Fleet and co-workers ${ }^{6}$ to be a good inhibitor of naringinase.

In this communication we report the preparation of novel optically pure tetrahydroxyindolizidines via the cyclization of chiral imino- C-polyols, the latter being formed by elongation of pyrrolidines-carbaldehydes through Knoevenagel reaction followed by Sharpless asymmetric dihydroxylations, an approach that, as far as we are aware, has not been applied to that field.

Starting from 3,6-(tert-butoxycarbonyl)imino-2,3,6-trideoxy-4,5-O-isopropylidene-L-arabino-hexose ${ }^{7}$ (1) Knoevenagel-Doebner reaction ${ }^{8}$ with hydrogen methyl malonate gave, after 3 h , a mixture of the two trans-

[^0]regioisomers 2 and 3 in 50 and 40\% yield, respectively (Scheme 1).

In the case of compound 2, dihydroxylation reaction with a catalytic amount of osmium tetraoxide ${ }^{9}$ gave a mixture of diols 4 and 5 in 91% yield and a low stereoselectivity of $1.7: 1^{10}$ (Scheme 2), which indicates that the sugar moiety exerts a weak control into the stereoselectivity. Reaction of the mixture 4 and 5 with trifluoroacetic acid followed by heating with NaOMe in MeOH under reflux afforded a mixture of indolizidinones that were separated by chromatography, after acetylation, giving compounds 6 and 7 in 47 and 35% yield, respectively. Compound $\mathbf{6}$ is the major one indi-

Scheme 1.

Scheme 2. Reaction conditions: (a) OsO_{4} (cat.), NMO , acetone $-\mathrm{H}_{2} \mathrm{O} 4: 1$, rt, 4 days; (b) 1. TFA aq., $2 \mathrm{~h}, 2 . \mathrm{NaOMe}$, MeOH reflux, $16 \mathrm{~h} ; 3 . \mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}, \mathrm{DMAP}, \mathrm{rt}, 16 \mathrm{~h}$; (c) $\mathrm{NaOMe}, \mathrm{MeOH}, \mathrm{rt}, 2 \mathrm{~h}$.
cating that the OsO_{4} attack has taken place with preference for the top face. In order to improve the selectivity of the reaction, double asymmetric reactions ${ }^{11}$ with the commercial reagents AD -mix α and $\mathrm{AD}-$ mix β were carried out, although the reaction failed probably due to the high steric hindrance between the catalyst and the bulky protecting group. Treatment of 6 and 7 separately with NaOMe in MeOH rendered compounds $\mathbf{8}$ and $\mathbf{9}$ in quantitative yield. The spectral data of $\mathbf{6}$ and 7^{12} were consistent with the configuration assigned. Compound 6 shows large coupling constants $J_{7,8}=$ $J_{8,8 \mathrm{a}}=8.9 \mathrm{~Hz}$ and NOEs between pairs of protons $\mathrm{H} 7 /$ H8a. On the other hand, compound 7, presents a gauche relationship between $\mathrm{H} 7, \mathrm{H} 8$ and H 8 a ($J_{7,8}=$ $J_{8,8 \mathrm{a}}=4.6 \mathrm{~Hz}$) and NOEs between pairs of protons H8/H8a.

Similar results were obtained for compound 3. Dihydroxylation reaction with a catalytic amount of OsO_{4} and N -methylmorpholine at rt for 24 h , gave a mixture of the two diastereoisomeric diols in quantitative yield and a 1.4:1 ratio. With the idea of having a better diastereoselectivity in the hydroxylation reaction, we envisaged carrying out asymmetric Sharpless dihydroxylation in the p-methoxybenzoyl ester 10 (Scheme 3) obtained from 3 after reduction of the ester group with DIBALH (60%) and reaction with p-methoxybenzoyl chloride in the presence of triethylamine and dimethylaminopyridine (94%). Compound $\mathbf{1 0}$ is a good substrate for asymmetric dihydroxylation, because it is known ${ }^{13}$ that aromatic moieties attached to allylic alcohols
produce an excellent control in the diastereoselectivity when using the pseudoenantiomeric Cinchona alkaloid ligands for Sharpless reagents. Thus, hydroxylation of compound 10 with AD-mix β^{14} gave 11 as major compound (60% yield, d.e. $=91 \%$). On the other hand, reaction of $\mathbf{1 0}$ with $\mathrm{AD}-\mathrm{mix} \alpha$ gave $\mathbf{1 2}$ as major compound $(72 \%$ yield, d.e. $=97 \%)$.

Treatment of $\mathbf{1 1}$ and $\mathbf{1 2}$ separately with $\mathrm{NaOMe} / \mathrm{MeOH}$ followed by regioselective tosylation of the primary alcohol afforded compounds 13 and 14 in moderate-togood yield. Boc-deprotection of 13 (TFA aq.) followed by $\mathrm{NH}_{4} \mathrm{OH}$ neutralization afforded tetrahydroxyindolizidine 15 (69\%) and pyrrolizidine 16 (28%), via ring opening of the terminal epoxide formed from 13. When the same conditions were applied to 14,

(h) $\left\{\begin{array}{r}15 R=H \\ 18 R=A C\end{array}\right.$
16

(h) $\left\{\begin{array}{r}17 \mathrm{R}=\mathrm{H} \\ 19 \mathrm{R}=\mathrm{Ac}\end{array}\right.$

Scheme 3. Reaction conditions: (a) DIBALH, DCM, $-15^{\circ} \mathrm{C}$; (b) $4-\mathrm{MeOBzCl}, \mathrm{TEA}, \mathrm{DMAP}$; (c) AD-mix $\beta, 0^{\circ} \mathrm{C}, 48 \mathrm{~h}$; (d) AD-mix $\alpha, 0^{\circ} \mathrm{C}, 24 \mathrm{~h}$; (e) $\mathrm{NaOMe} / \mathrm{MeOH}$, rt, 3 h ; (f) TsCl, Py, $-15^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (g) 1. TFA aq., 2. $\mathrm{NH}_{4} \mathrm{OH}$; (h) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}$.

Table 1.

Comp.	H-1	H-2	H-6	H-7
$\mathbf{1 5}$	4.06	4.42	3.76	3.94
$\mathbf{1 8}$	5.42	5.33	4.89	5.05
$\mathbf{1 7}$	3.99	4.31	3.50	3.40
$\mathbf{1 9}$	5.33	5.29	5.08	4.28

only indolizidine $\mathbf{1 7}$ was obtained in 94% yield. The spectroscopic data of $\mathbf{1 5}, \mathbf{1 6}$ and $\mathbf{1 7}$ confirmed the proposed structures. ${ }^{15}$ The absolute configuration of compounds 15 and 17 were based upon NOEs between pair of protons $\mathrm{H} 7 / \mathrm{H} 8-\beta$ for compound 15 and NOEs between $\mathrm{H} 7 / \mathrm{H} 8 \mathrm{a}, \mathrm{H} 7 / \mathrm{H} 8-\alpha$ and $\mathrm{H} 6 / \mathrm{H} 8-\beta$ for compound 17. The indolizidine character of compounds 15 and 17 was demonstrated with the ${ }^{1} \mathrm{H}$ NMR spectra of their corresponding peracetates derivatives 18 and 19 (Table 1). A deshielding of the resonances for $\mathrm{H} 1, \mathrm{H} 2$, H6 and H7, was observed confirming the proposed structures. In the case of compound 16, the pyrrolizidine structure and absolute configuration was based on its MSCI spectrum, where a loss of a hydroxymethyl group were observed and on its ${ }^{1} \mathrm{H}$ NMR spectrum where NOEs between pair of protons H7a/ $\mathrm{H} 7-\alpha, \quad \mathrm{H} 5 / \mathrm{H} 7-\alpha, \quad \mathrm{H} 6 / \mathrm{H} 7-\beta$ and $\mathrm{H} 3-\beta / \mathrm{H}-8$ were observed.

This work presents a new synthetic approach for the construction of polyhydroxyindolizidines based on synhydroxylation of alkenyl pyrrolidines followed by cyclization. High stereoselectivity is obtained when using double asymmetric reactions. The present paper discloses for the first time the preparation of tetrahydroxyderivatives 8, 9, 15, 17.

Biological evaluation of the new molecules will be carried out and be reported in a forthcoming paper.

Acknowledgements

We thank Professor Pierre Vogel of the 'Institut des Sciences Moléculaires de l'Ecole Polytechnique Fédérale de Lausanne, Suisse' for discussions. This work was supported by the Ministerio de Educación y Cultura, (PB97/0730), the Junta de Andalucía, Spain (FQM 134). This work is part of the Action COST-D13-0001/99.

References

1. See e.g.: (a) Casiraghi, G.; Zanardi, F. Chem. Rev. 1995, 95, 1677-1716; (b) Iminosugars as Glycosidase Inhibitors; Stütz, A. E., Ed.; Wiley-VCH: Weinheim, 1999; (c) Zeng, Y.; Pan, Y. T.; Asano, N.; Nash, R. J.; Elbein, A. D. Glycobiology 1997, 7, 297; (d) Asano, N.; Nash, R. J.; Molyneux, R. J. Fleet, G. W. Tetrahedron: Asymmetry 2000, 11, 1645-1680; (e) Lillelund, V. H.; Jensen, H. H.; Liang, X.; Bols. M. Chem. Rev. 2002, 102, 515-553.
2. See e.g.: (a) Goss, P. E.; Baker, M. A.; Carver, J. P.; Dennis, J. W. Clin. Cancer Res. 1995, 1, 935; (b) Das, P. C.; Robert, J. D.; White, S. L.; Olden, K. Oncol. Res. 1995, 7, 425.
3. For reviews, see e.g.: (a) Cossy, J.; Vogel, P. Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, 1993; Vol. 12, pp. 275-363; (b) El Nemr, A. Tetrahedron 2000, 56, 8579-8629; (c) El Ashry, E. S. H.; Rahed, N.; Shobier, A. H. S. Pharmazie 2000, 55, 331-348.
4. See e.g.: lentiginosine and derivatives: (a) Brandi, A.; Cicchi, S.; Cordero, F. M.; Frignoli, R.; Goti, A.; Picasso, S.; Vogel, P. J. Org. Chem. 1995, 60, 6806-6812; (b) Cardona, F.; Goti, A.; Picasso, S.; Vogel, P.; Brandi, A. J. Carbohydr. Chem. 2000, 19, 585-601; (c) pentahydroxyindolizidines: Chen, Y.; Vogel, P. J. Org. Chem. 1994, 59, 2487-2496; Picasso, S.; Chen, Y.; Vogel, P. Carbohydr. Lett. 1993, 1, 1-8; (d) Izquierdo, I.; Plaza, M. J.; Robles, R.; Mota, A. J. Tetrahedron: Asymmetry 1998, 9, 1015-1027; 5-azacastanospermine: (e) Søndergard, K.; Liang, X.; Bols, M. Chem. Eur. J. 2001, 7, 2324-2331.
5. (a) Patil, N. T.; Tilekar, J. N.; Dhavale, D. D. J. Org. Chem. 2001, 6, 1065-1074; (b) Back, T. G.; Nakajima, K. Org. Lett. 1999, 1, 261-263; (c) Kawakami, T.; Ohtake, H.; Arakawa, H.; Okachi, T.; Imada, Y.; Murahashi, S.-I. Org. Lett. 1999, 1, 107-110; (d) Clark, R. B.; Pearson, W. H. Org. Lett. 1999, 1, 349-351.
6. Davis, B.; Bell, A. A.; Nash, R. J.; Watson, A. A.; Griffiths, R. C.; Jones, M. G.; Smith, C.; Fleet, G. W. J. Tetrahedron Lett. 1996, 37, 8565-8568.
7. Cardona, F.; Robina, I.; Vogel, P. J. Carbohydr. Chem. 2000, 19, 555-571.
8. López-Herrera, F. J.; Pino González, M. S. Carbohydr. Res. 1986, 152, 283-291 and references cited therein.
9. Donohoe, T. J.; Moore, P. R.; Beddoes, R. L. J. Chem. Soc., Perkin Trans. 1 1997, 43-51.
10. Typical procedure for osmylation: Alkene 2 or 3 (1 $\mathrm{mmol})$ was dissolved in acetone: $\mathrm{H}_{2} \mathrm{O}$ 4:1 (3 mL), Nmethylmorpholine (4 equiv.) and $\mathrm{OsO}_{4} / \mathrm{Bu}^{t} \mathrm{OH}$ (0.1 equiv.) was added and the reaction mixture stirred for 24 h at rt. An excess of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ was added and the mixture stirred for 30 min at rt and then extracted with AcOEt. The combined extracts were washed with brine and water, dried and evaporated. Purification was achieved by column chromatography with DCM:acetone $25: 1$ as eluant.
11. Kolb, K. C.; van Nieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 2483-2547.
12. Selected data for 6: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$, $J \mathrm{~Hz}) \delta 5.27\left(\mathrm{t}, 1 \mathrm{H}, J_{8,8 \mathrm{a}}=J_{8,7}=9.4, \mathrm{H}-8\right), 5.21(\mathrm{ddd}, 1 \mathrm{H}$, $J_{7,6}=6.9, J_{7,6^{\prime}}=8.8, \mathrm{H}-7$), 3.80 (dd, 1H, $J_{1,8 \mathrm{a}}=2.8, \mathrm{H}-8 \mathrm{a}$), 3.04 (dd, $1 \mathrm{H},{ }^{2} J_{6,6^{\prime}}=17.8, \mathrm{H}-6$), 2.49 (dd, $1 \mathrm{H}, \mathrm{H}-6^{\prime}$). Selected data for $7:{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$, $J \mathrm{~Hz}) \delta 5.61\left(\mathrm{t}, 1 \mathrm{H}, J_{8,8 \mathrm{a}}=J_{8,7}=4.6, \mathrm{H}-8\right), 5.36(\mathrm{td}, 1 \mathrm{H}$, $\left.J_{7,6}=7.2, \mathrm{H}-7\right), 4.21\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,8 \mathrm{a}}=3.2, \mathrm{H}-8 \mathrm{a}\right), 3.77(\mathrm{~d}$, 2H, H-6).
13. Guzmán Pérez, A.; Corey, E. J. Tetrahedron Lett. 1997, 38, 5941-5944.
14. Typical procedure for asymmetric dihydroxylation: To a solution of alkene $\mathbf{1 0}(0.1 \mathrm{mmol})$ in $\mathrm{Bu}^{t} \mathrm{OH}: \mathrm{H}_{2} \mathrm{O}$ 1:1 (1.2 $\mathrm{mL})$ at $0^{\circ} \mathrm{C}, \mathrm{AD}-\operatorname{mix} \alpha$ or $\mathrm{AD}-\operatorname{mix} \beta(0.14 \mathrm{~g})$ and $\mathrm{MeSO}_{2} \mathrm{NH}_{2}$ (0.1 equiv.) was added. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for x days (AD-mix $\alpha, x=1$; AD-mix β, $x=2$). Work-up procedure is as described for osmylation.
15. Selected data for 15: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOD}, \delta$ ppm, $J \mathrm{~Hz}) \delta 3.94\left(c, 1 \mathrm{H}, J_{7,6}=J_{7,8 \beta}=J_{7,8 \alpha}=3.0\right.$, H-7), 3.76 (m, 1H, H-6), 3.23-3.06 (m, 5H, H-3 $\alpha, \mathrm{H}-3 \beta, \mathrm{H}-5 \alpha$, $\mathrm{H}-5 \beta, \mathrm{H}-8 \mathrm{a}), 2.30$ (ddd, $1 \mathrm{H}, J_{8 \beta, 8 \mathrm{a}}=12.5,{ }^{2} J_{8 \beta, 8 \alpha}=14.5$, $\mathrm{H}-8 \beta), 1.79\left(\mathrm{dt}, 1 \mathrm{H}, J_{8 \alpha, 8 \mathrm{a}}=2.7\right.$, H-8 $)$. Selected data for 16: ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{MeOD}, \delta \mathrm{ppm}, J \mathrm{~Hz}\right) \delta 4.43$ (dt, $1 \mathrm{H}, J_{7 \mathrm{a}, 7 \alpha}=9.9, J_{7 \mathrm{a}, 7 \mathrm{\beta}}=J_{7 \mathrm{a}, 1}=4.1, \mathrm{H}-7 \mathrm{a}$), 4.33 (ddd, $\left.1 \mathrm{H}, J_{2,1}=4.0, J_{2,3 \beta}=6.3, J_{2,3 \alpha}=10.4, \mathrm{H}-2\right), 4.26$ (ddd, $1 \mathrm{H}, \mathrm{H}-6), 4.07(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-1), 3.92\left(\mathrm{dd}, 1 \mathrm{H}, J_{8,5}=3.6\right.$, $\left.{ }^{2} J_{8,8^{\prime}}=13.0, \mathrm{H}-8\right), 3.81\left(\mathrm{dd}, 1 \mathrm{H}, J_{8^{\prime}, 5}=9.1, \mathrm{H}-8^{\prime}\right), 3.52$
(td, $\left.1 \mathrm{H}, J_{5,6}=8.6, \mathrm{H}-5\right), 3.46\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} J_{3 \beta, 3 \alpha}=10.8, \mathrm{H}-\right.$ 3β), 3.27 ($\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-3 \alpha$), 2.48 (ddd, $1 \mathrm{H}, J_{7 \beta, 6}=6.2$, $\left.{ }^{2} J_{7 \beta, 7 \alpha}=12.6, \mathrm{H}-7 \beta\right), 1.92\left(\mathrm{dd}, 1 \mathrm{H}, J_{7 \alpha, 6}=8.0, \mathrm{H}-7 \alpha\right)$. Selected data for 17: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOD}, \delta$ $\mathrm{ppm}, J \mathrm{~Hz}) \delta 3.50$ (ddd, $1 \mathrm{H}, J_{6,5 \alpha}=10.0, J_{6,7}=8.9$, $\left.J_{6,5 \beta}=4.8, \mathrm{H}-6\right), 3.40\left(\mathrm{ddd}, 1 \mathrm{H}, J_{7,8 \alpha}=4.9, J_{7,8 \beta}=11.0\right.$, $\mathrm{H}-7$), 3.17 (dd, $1 \mathrm{H},{ }^{2} J_{5 \beta, 5 \alpha}=10.8, \mathrm{H}-5 \beta$), 2.28 (ddd, 1 H , $\left.J_{8 \mathrm{a}, 1}=3.9, J_{8 \mathrm{a}, 8 \beta}=11.7, \mathrm{H}-8 \mathrm{a}\right), 2.04\left(\mathrm{t}, 1 \mathrm{H}, J_{5 \alpha, 6}=10.5\right.$, $\mathrm{H}-5 \alpha$), 1.97 (ddd, $1 \mathrm{H}, J_{8 \alpha, 8 \mathrm{a}}=2.6,{ }^{2} J_{8 \alpha, 8 \beta}=13.1, \mathrm{H}-8 \alpha$), 1.68 (ddd, $1 \mathrm{H}, J_{8 \beta, 8 \mathrm{a}}=1.2, \mathrm{H}-8 \beta$).

[^0]: * Corresponding authors. Fax: +34-95-462-4960; e-mail: robina@ us.es

